On the Upper Chromatic Number of Uniform Hypergraphs

نویسندگان

  • Mario Gionfriddo
  • Vitaly Voloshin
چکیده

In this paper we determine some necessary conditions for a uniform hypergraph to have a given upper chromatic number. Mathenmatics Subject Classification: 05C05

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coloring d-Embeddable k-Uniform Hypergraphs

This paper extends the scenario of the Four Color Theorem in the following way. LetHd,k be the set of all k-uniform hypergraphs that can be (linearly) embedded into Rd . We investigate lower and upper bounds on the maximum (weak and strong) chromatic number of hypergraphs in Hd,k. For example, we can prove that for d ≥ 3 there are hypergraphs inH2d−3,d on n vertices whose weak chromatic number ...

متن کامل

no-homomorphism conditions for hypergraphs

In this paper, we define some new homomorphism-monotone parameters for hypergraphs. Using these parameters, we extend some graph homomorphism results to hypergraph case. Also, we present some bounds for some well-known invariants of hypergraphs such as fractional chromatic number,independent numer and some other invariants of hyergraphs, in terms of these parameters.

متن کامل

Directed domination in oriented hypergraphs

ErdH{o}s [On Sch"utte problem, Math. Gaz. 47 (1963)] proved that every tournament on $n$ vertices has a directed dominating set of at most $log (n+1)$ vertices, where $log$ is the logarithm to base $2$. He also showed that there is a tournament on $n$ vertices with no directed domination set of cardinality less than $log n - 2 log log n + 1$. This notion of directed domination number has been g...

متن کامل

A note on the least number of edges of 3-uniform hypergraphs with upper chromatic number 2

The upper chromatic number (H) of a hypergraphH= (X,E) is the maximum number k for which there exists a partition of X into non-empty subsets X=X1 ∪X2 ∪ · · · ∪Xk such that for each edge at least two vertices lie in one of the partite sets. We prove that for every n 3 there exists a 3-uniform hypergraph with n vertices, upper chromatic number 2 and n(n− 2)/3 edges which implies that a correspon...

متن کامل

Circular Chromatic Number of Hypergraphs

The concept of circular chromatic number of graphs was introduced by Vince(1988). In this paper we define circular chromatic number of uniform hypergraphs and study their basic properties. We study the relationship between circular chromatic number with chromatic number and fractional chromatic number of uniform hypergraphs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014